Блуждающие токи: причины возникновения и способы защиты от них
Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.).
После проведения ряда экспертиз было установлено, что основная причина разрушения металла – электрохимическая коррозия, которую вызывают блуждающие токи.
Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.
Что такое блуждающий ток?
Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».
Причины и источники возникновения
Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.
На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций.
Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов.
Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.
Таблица 1. Потенциальные источники.
Название объекта | Взаимосвязь с землей |
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. | При наличии на объекте ЗУ. |
ВЛ сетей с изолированной нейтралью, кабельные магистрали. | Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей. |
Рельсовый электротранспорт, системы с заземленной нейтралью. | Наличие технологической связи между одним из проводников и землей. |
Механизм образования блуждающих токов
В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.
Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта.
Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи.
Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.
Образование блуждающих токов между ЗУ нулевого провода
Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.
В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.
Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.
Рельсовый электротранспорт в качестве источника блуждающих токов
Обозначения:
- Контактный провод, от которого получает питание силовая установка электротранспорта.
- Питающий фидер (подключен к контактному проводу).
- Одна из тяговых подстанций, питающая сети трамваев.
- Дренажный фидер (подключен к рельсам).
- Рельсы.
- Трубопровод на пути прохождения блуждающих токов.
- Анодная зона (положительные потенциалы).
- Катодная зона (отрицательные потенциалы).
Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.
Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.
Связь блуждающего тока и коррозии на металле
Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу.
Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом.
Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.
В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии.
На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет.
Пример такого воздействия представлен ниже.
Труба после воздействия блуждающих токов
Способы защиты от блуждающих токов
Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.
Видео про различные защиты от блуждающих токов
Защита водопроводных труб
Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.
Пассивная защита
Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.
Пример защитного покрытия трубы для подземной укладки
К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию.
Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою.
В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.
Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.
Активная защита
Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.
Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока.
В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5).
Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.
Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.
Рисунок 5. Варианты реализации катодной защиты
Обозначения:
- Применение жертвенного анода.
- Метод поляризации.
- Проложенная в земле металлоконструкция.
- Закладка в грунте жертвенного анода.
- Источник постоянного тока.
- Подключение к источнику малорастворимого анода.
Защита полотенцесушителей
Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.
Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.
Защита газопроводов
Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.
Как измерить блуждающие токи?
Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:
- Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
- Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
- Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
- Оценка плотности тока утечки с оболочки кабельных линий в грунт.
Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.
Набор инструментов для измерения блуждающих токов
Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями.
При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции.
Если между потенциалами на электродах появляется разность, она фиксируется прибором.
Рекомендуем также почитать:
Источник: https://www.asutpp.ru/bluzhdayuschie-toki.html
Блуждающие токи и способы борьбы с ними – Stroim24.info
Всем знакомо понятие электрического тока. Есть проводник, по нем движутся заряженный частицы, на противоположных концах (или в двух произвольных точках) возникает разность потенциалов.
Использование этого физического явления для организации электропитания — безусловное благо цивилизации.
Появляется возможность передавать электроэнергию на значительные расстояния, приводить в движение механизмы, получать тепло, изображение, звук, преобразовывать электрическую энергию в механическую.
А если движение заряженных частиц возникает в естественном проводнике, например — в грунте? Это явление называется «блуждающие токи».
Их появление не сулит ничего хорошего: возникает опасность поражения электротоком, разрушаются элементы металлических конструкций, расположенных в земле.
Кроме того, на «обеспечение» блуждающих токов тратится определенное количество энергии. То есть, возникает незапланированный перерасход.
Как возникает это явление
Рассмотрим блуждающие токи на примере электрифицированной железной дороги, под которой проложен трубопровод.
Питание электропоезда осуществляется с помощью двух контактных линий: фазный провод — это контактная сеть, расположенная на опорах-столбах и подвешенная на массивных изоляторах.
А нулевой «провод» — это рельсы.
На всем пути следования располагаются тяговые подстанции, которые работают по одинаковому принципу: нулевой потенциал соединен с физической «землей» в качестве заземления (зануления).
Поскольку рабочее заземление в любом случае имеет физический контакт с грунтом, это абсолютно безопасно.
Между нулевым и фазным проводниками (рельсы и контактный провод) протекает рабочий электрический ток. Он штатно возникает при соединении колес с рельсами и пантографа электровоза с контактной линией.
Поскольку рельсы непосредственно связаны с грунтом, можно предположить, что в земле также возникает потенциал, равный потенциалу нулевого проводника. Если он одинаковый на всем протяжении рельсового пути – нет проблем, это нормальная и безопасная ситуация.
Но железная дорога редко прокладывается по прямой. Кроме того, электрическая связь между физической землей и металлом ж/д пути не всегда стабильна.
Получается, что от одной тяговой подстанции до рядом стоящей (несколько десятков километров) электрический ток может протекать как по рельсу, так и по грунту. То есть, электроны могут блуждать по кратчайшему пути.
Вспоминаем про кривизну ж/д пути, и получаем те самые блуждающие токи, протекающие в толще грунта.
А если в этом месте проложены коммуникации (например, стальной трубопровод), то электроны протекают по его стенкам (смотреть иллюстрацию).
Где проблема
По аналогии с обычными электрическими процессами, возникает электрохимическая реакция. Блуждающий ток стремится по пути наименьшего сопротивления (мы же понимаем, что грунт в сравнение с металлической трубой является худшим проводником).
В том месте, где проводимость между рельсами и трубопроводом самая высокая (мокрая земля, железистый грунт, и другие причины), возникает так называемая катодная зона с точки зрения трубопровода. Электрический ток как бы «затекает» в трубу.
Пока еще это не опасно: трубопровод расположен в грунте, разницы потенциалов нет, у вас из крана не потечет вода под напряжением 3000 вольт.
Статья в тему: Как подключить электричество к частному дому
Пройдя по трубе до благоприятного места перетекания в рельсы, электроны устремляются по грунту в сторону «штатного» проводника. Возникает анодная зона, электроток «вытекает» из трубы, прихватывая за собой частички металла (на молекулярном уровне).
По всем законам протекания электрохимических процессов, на этом участке интенсивно развивается коррозия.
Водопроводчики недоумевают: труба из качественной стали, прошла все возможные антикоррозийные обработки, уложена согласно техническим условиям, срок эксплуатации минимум 50 лет. И вдруг прорыв и проржавевшая дыра размером с ладонь.
И это все за каких-то пару лет. Причем электрохимической коррозии подвергается любой металл, будь то сталь, медь или алюминий.
Никакой связи с влажностью почвы нет, разве что блуждающие токи выбирают «мокрое место» для формирования анодной и катодной зоны. Это страшный сон аварийных бригад водоканала. Если не согласовывать проекты между отраслевыми ведомствами — проблема становится неконтролируемой.
Побочный эффект, усугубляющий потери
Напротив катодной зоны «жертвы», то есть трубопровода, возникает анодная зона рельсового пути. Это логично: если электроток куда-то входит, он должен откуда-то выходить, точнее вытекать.
Это ближайшее с точки зрения электропроводности грунта место, где рельс имеет электрический контакт с физической землей (грунтом). В этой точке происходят аналогичные электрохимические разрушения металла железнодорожного полотна.
А вот это уже проблема, связанная с безопасностью людей.
Кстати, эта ситуация характерна не только для магистральных железных дорог и трубопроводов. Да и прокладываются они не всегда параллельно друг другу. А вот в городе, где рядом с многочисленными подземными коммуникациями проходят трамвайные пути, возникает такое количество разнонаправленных блуждающих токов, что впору задуматься о комплексных мерах защиты.
На примере железной дороги, мы разобрали принцип негативного влияния паразитных токов. Эти процессы запрограммированы (если можно так сказать) самой конструкцией,
А где еще существует «блуждающая» проблема
Там, где генерируется электрическая энергия (что довольно логично). Разумеется, в эту «группу риска» входят не только электростанции. Там более, что на таких объектах подобных проблем практически не существует. Блуждающие токи возникают на пути следования электроэнергии к потребителю. Точнее, в точках преобразования напряжения: в зонах действия трансформаторных подстанций.
Нам уже понятно, что для появления этих самых паразитных токов необходима разность потенциалов. Представим типовую трансформаторную подстанцию, в которой применяется система заземления TN-C. При изолированной нейтрали, заземляющие контуры соединены между собой нулевым проводником, обозначаемым аббревиатурой PEN.
Получается, что по этому проводнику протекает рабочий ток всех потребителей на линии, с одновременным их заземлением. Эта линия (PEN) имеет собственное сопротивление, соответственно в разных ее точках происходит падение напряжения.
PEN (он же заземляющий проводник) получает банальную разность потенциалов между ближайшими контурами заземления. Возникает «неучтенный» ток, который по описанному выше принципу протекает и по физической земле, то есть в грунте.
Если на его пути появляется попутный металлический проводник, блуждающий ток ведет себя так же точно, как в трубе под железнодорожным полотном.
То есть, в анодной зоне разрушает металл проводника (трубопровод, арматура железобетонных конструкций, оболочка кабеля), а в катодной зоне уничтожает PEN-проводник.
Пробой изоляции
Ситуация с нарушением изолирующей оболочки кабеля может возникнуть где угодно. Вопрос в том, какие будут последствия.
Предположим утечку фазы в грунт на значительном расстоянии от рабочего контура заземления.
Если сила тока достаточно большая (точка пробоя большой площади), созданы «благоприятные» условия: влажный грунт, и прочее — достаточно быстро сработает защитная автоматика, и линия будет отключена.
А если сила тока меньше, чем ток «отсечки» автомата? Тогда между «пятном» утечки и «землей» возникают долгоиграющие блуждающие токи. А дальше вы знаете: попутный трубопровод, кабель в металлической оболочке, анодная зона, электрохимическая коррозия…
Собственно, группа риска определена:
- Трубопроводы с металлическими стенками. Это может быть вода, канализация, нефте- или газопроводы.
- Кабельные линии (силовые, сигнальные, информационные) с металлической оболочкой.
- Металлическая арматура в конструкциях дорог или зданий.
- Габаритные цельнометаллические сооружения. Например, емкость (танк) для хранения нефтепродуктов.
Защита от блуждающих токов
На самом деле, полноценной защиты от этой проблемы нет. Ее просто не может быть с точки зрения физики. Единственный действенный метод — подсунуть всепожирающим блуждающим токам иную жертву, которую не так жалко. Мало того, у этого приспособления и название соответствующее: «жертвенный анод». А методика именуется катодной защитой.
Принцип работы в исключении анодных зон на защищаемом объекте. Вместо них используются те самые жертвенные аноды, которые меняют по мере их электрохимического разрушения. А вокруг объекта формируются лишь безопасные для него катодные зоны.
Для того, чтобы система функционировала, требуется дополнительная энергия. В критических местах устанавливаются так называемые станции катодной защиты, которые запитаны от линий электропередач.
Это связано с некоторыми затратами, которые несравнимы с потерями на ремонт и восстановление испорченных объектов (трубопровода, кабеля и прочего).
А если защищаемый объект относится к опасной категории (например, нефтехранилище, в котором в результате электрохимической коррозии может произойти утечка продукта), то стоимость защитных устройств вообще не берется во внимание.
Недостатки систем катодной защиты
Методика отнюдь не универсальна, необходимо строить каждый объект под конкретные условия эксплуатации.
При неправильных расчетах силы защитного тока, происходит так называемая «перезащита», и уже катодная станция является источником блуждающих токов.
Поэтому, даже после монтажа и введения в строй, катодные системы постоянно контролируются. Для этого в разных точках монтируются специальные колодцы для замера силы тока защиты.
Контроль может быть ручным или автоматическим. В последнем случае устанавливается система слежения за параметрами, соединенная с аппаратурой управления катодной станцией.
Дополнительные способы защиты от блуждающих токов
- Применение кабельных магистралей с внешней оболочкой, которая является хорошим диэлектриком. Например, из сшитого полиэтилена.
- При проектировании систем энергоснабжения, использовать только системы заземления типа TN-S. В случае капитального ремонта сетей, заменять устаревшую систему TN-C.
- При расчете маршрутов железнодорожных путей и подземных коммуникаций, по возможности разносить эти объекты.
- Использовать под рельсами изолирующие насыпи, из материалов с минимальной электропроводностью.
Видео по теме
Поделитесь с друзьями в соц.сетях
Источник: https://stroim24.info/bluzhdayuschie-toki-i-sposoby-bor-by-s-nimi/
Блуждающие токи и методы борьбы с их взаимодействиями
Электрические токи, время и место появления которых пока не поддается предварительному прогнозу называются блуждающими.
В отличие от тех электрических токов, которые действуют стационарно и влияние которых на объект можно скомпенсировать с помощью тех или иных мер, блуждающие токи появляются непредсказуемо в произвольном месте.
От направления этих токов зависит какой процесс происходит в объекте, через который протекает ток. Если объект имеет положительный потенциал относительно другого объекта или среды, при контакте с которой возникают электрические токи, то наблюдается коррозия (окисление).
Если объект имеет отрицательный потенциал, то на нем происходит восстановление параметров того вещества, которое имеется в жидкости, входящей в состав среды, через которую протекает электрический ток.
Так как химическая активность элементов, находящихся в контакте с жидкой средой, представляющей электролит, как правило, неизвестна, то не представляется возможным предсказать время и место появления блуждающего тока.
Как принято считать, наличие блуждающего тока приводит к коррозии того объекта, который имеет положительный потенциал относительно жидкой среды, по которой протекает ток ионов.
В качестве основной меры, обеспечивающей устранение коррозии в протяженных трубопроводах, применяют так называемую катодную защиту.
Для этого на трубу подается достаточно высокое значение отрицательного потенциала, который гарантирует отрицательный потенциал на трубе при любых значениях параметров, которые вызывают блуждающие токи. В известных технических решениях на трубу подается потенциал приблизительно в 6 кВ.
Считается, что при любых реальных значениях среды и электролита в цепи отсутствует положительный ток, который может вызывать коррозию. Происходит, так называемая катодная защита трубы от коррозии, которая достаточно эффективна, но имеет один недостаток: компоненты, входящие в состав прокачиваемой среды, осаждаются на ее внутренней поверхности.
Это различные парафины, которые существенно уменьшают реально используемый диаметр трубы и увеличивают затраты энергии, необходимой для перекачки единицы продукта.
Для восстановления исходного внутреннего диаметра трубы необходимо удалять образовавшиеся отложения парафина, для этого применяют механические методы очистки, с помощью специальных «ершей».
Единственно эффективной мерой защиты трубы от коррозии блуждающими токами, является сведение к нулевому значению токов, которые протекают по трубе на различных участках. Для этого трубопровод разбивается на участки, на которые подаются напряжения, обеспечивающие «нулевые» (или стремящиеся к нулю) токи между трубой и окружающей ее средой.
«Уравнительный» ток между участками будет протекать по трубе, и не будет вызывать коррозию. Причем нулевое значение тока между трубой и окружающей средой можно поддерживать автоматически, с помощью, специально разработанных средств аналоговой электроники.
Значение выходного напряжения у операционных усилителей будет зависеть от значений блуждающих токов и расстояния, на котором они размещены.
При значительном количестве источников блуждающего тока, количество участков между усилителями их компенсации будет существенно больше и больше динамический диапазон изменений их выходных напряжений. Усилители должны быть охвачены стопроцентной отрицательной обратной связью и иметь малый собственный дрейф нуля.
При динамическом диапазоне усилителей, выходное напряжение которых может достигать десятков вольт, возможен случай, когда коррозия от электрических токов и осаждение на стенку перекачиваемого продукта будут практически сведена к нулю (при использовании усилителей мало чувствительных к синфазному сигналу).
Уравнительный ток между участками будет протекать по трубе и по «земле», не вызывая коррозии у трубы.
Уровень блуждающих токов зависит: – от электрохимического потенциала объектов, между которыми протекает электрический ток; – от состава среды (электролита) между объектами; – от расстояния, по которому протекает электрический ток;
– от наличия электромагнитных полей, пронизывающих объекты и электролит, которые могут создавать выделение радианной энергии (феномен Тесла).
Последнее – особенно опасно, если электромагнитные поля изменяются достаточно быстро.
Автор Гусев. В.Г.
Источник: http://avl.net.ua/index.php/content/1562-bluzhdayushchiye-toki-i-metody-borby
Блуждающие токи и как сними бороться.. Статьи компании «ЧП Набока А.И»
Блуждающие токи и полотенцесушитель
Вы заметили, что полотенцесушитель из нержавейки в ванной комнате начинает покрываться пятнами ржавчины размером с 2-3 спичечные головки. А если это пятно вытереть, то за ним стоит маленькая еле заметная точечка, которая и ржавеет, и распространяется по поверхности…
Это – коррозия металла. И рок здесь ни при чем.
Находящиеся в воде и земле металлические конструкции подвергаются двум типам коррозии: гальванической и так называемой “коррозии от блуждающих токов“.
Блужда́ющие то́ки — токи, возникающие в земле при её использовании в качестве токопроводящей среды.
Вызывают коррозию металлических предметов, полностью или частично находящихся под землёй, а иногда и лишь соприкасающихся с поверхностью земли.
Характерны, в частности, для трамвайных и железнодорожных путей электрифицированных железных дорог, не обслуживаемых должным образом. В ряде случаев блуждающие токи являются следствием аварийной утечки с линий электропередачи.
Очень часто “блуждающими токами” называют нулевые токи, существующие в металлических незаземленных (необнуленных) конструкциях. Неправильность употребления термина никак не уменьшает разрушительных способностей таких электро токов.
Гальваническая коррозия представляет собой электрохимическую реакцию между двумя и более различными (или разнородными) металлами. Различными, потому что для того, чтобы началась реакция, один должен быть более химически активным (или менее стабильным), чем другой или другие.
Когда же речь идет о гальванической коррозии, то имеется в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.
Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (благодаря обычному соприкосновению или же посредством проводника) помещаются в жидкость, проводящую электричество (электролит).
Электролитом может быть что угодно, за исключением химически чистой воды.
Не только соленая морская, но и обычная вода из-под крана благодаря наличию минеральных веществ является превосходным электролитом, и с ростом температуры электропроводность ее только растет (по этой причине корпуса судов, эксплуатирующихся в жарком климате, заметно больше подвержены коррозии, чем в северных морях). Это же справедливо и по отношению к полотенцесушителям для ванной.
На примере морских судов, первый признак гальванической коррозии — вздутие краски на поверхностях, расположенных ниже ватерлинии, начинающееся обычно на острых гранях, и образование на обнажившемся металле белесого порошкообразного налета.
Потом на поверхности металла начинают образовываться заметные углубления — словно кто-то выгрызает из него кусочек за кусочком.
Гальваническую коррозию подводных частей подвесных моторов и угловых колонок — или любых алюминиевых частей лодки — значительно ускоряет наличие деталей из нержавеющей стали, таких, как гребные винты, триммеры (особенно если они “заземлены” на двигатель), узлы дистанционного управления.
Именно на них и уходят электроны алюминиевых деталей. Другая причина, способная ускорить процесс гальванической коррозии — это уменьшение полезной площади анодных протекторов.
Но и без наличия нержавеющей стали расположенные под водой алюминиевые детали все равно подвергаются воздействию гальванической коррозии — хотя и не столь интенсивной, как при контакте с иным металлом. При наличии электролита на большинстве однородных, вроде бы, металлических поверхностях все равно образуются крошечные аноды и катоды — в тех местах, где состав сплава неоднороден или имеются посторонние вкрапления или примеси — например, частицы металла с форм или штампов.
Другая причина гальванической коррозии — подключение к береговой электросети. При этом алюминиевая подводная часть мотора посредством заземляющего вывода подключается к подводным частям других лодок и становится частью огромной гальванической батареи, связанной с погруженным в воду береговым металлом. При этом не только на одной лодке, но и на соседних коррозия значительно ускоряется.
Коррозии от блуждающих токов
Вы узнали, на что способная гальваническая коррозия при использовании электрического потенциала самих металлов.
Представьте что будет, если добавить еще электричества! Произойти подобное может в том случае, если металл, по которому течет электрический ток, поместить в любой заземленный водоем (в реку, озеро, море, океан — без разницы, не в счет разве что стеклянный аквариум). Ток через воду устремится в землю.
Следствием этого явится интенсивная коррозия в том месте, где произошел “пробой”. В наихудшем случае та же алюминиевая подводная часть мотора может разрушиться буквально за несколько дней. Данная разновидность коррозии отличается от гальванической, хотя природа у них одна.
Гальваническая коррозия вызывается соединением двух разнородных металлов и происходит за счет разности их электрических потенциалов. Один металл выступает в роли анода, другой — в роли катода. Здесь же электрический ток попадает на подводную часть лодки из внешнего источника и через воду уходит в землю.
Блуждающие токи могут вызываться не только внешними, но и внутренними источниками — коротким замыканием в сети лодки, плохой изоляцией проводки, подмокшим контактом или неправильным подключением какого-либо элемента электрооборудования. Наиболее распространенный внешний источник блуждающих токов — береговая сеть электроснабжения.
Лодка с внутренним источником блуждающих токов (например, по причине повреждения изоляции одного из проводов) может стать причиной усиленной коррозии множества соседних лодок, подключенных к той же береговой электросети, если они обеспечивают лучшее заземление.
Ток при этом передается на другие лодки посредством все того же “третьего” заземляющего провода. Гораздо более неуловимый — но потенциально более опасный — случай коррозии блуждающих токов может происходить безо всяких проблем с электрооборудованием (и вашей лодки, и соседних).
Предположим, что вы возвращаетесь на стоянку после выходных на воде, подсоединяетесь к береговому источнику, чтобы подзарядить аккумулятор, и спокойно уходите домой — автоматическое зарядное устройство само отключит зарядившуюся батарею.
В понедельник по соседству с вашей лодкой причаливает большой стальной катер (с ободранной и поцарапанной краской). Владелец его тоже подключается к береговой сети и тоже оставляет свою посудину на несколько дней. Электрическая батарея готова — большой стальной корпус и небольшая подводная часть вашего мотора, соединенные заземляющим проводом.
В зависимости от разделяющего их расстояния, разницы размеров и времени, которое ваш сосед решил провести на берегу, в следующие выходные вы можете обнаружить, что подводная часть вашего мотора либо просто покрыта белесым налетом, либо разрушилась чуть ли не полностью.
Природа блуждающих токов кроется в разности потенциалов заземленных констукций в разных частях здания. Т.к.
все металлические конструкции, должны иметь гальванический контакт с нулевым проводником во ВРУ (вводно распределительном уст-ве) или ГРШ (главном распределительном шкафу). Это называется системой уравнивания потенциалов.
Для чего это делается – для того что бы взявшись за трубу и заземленное оборудование не получить удар током.
Труба будет где то далеко иметь свое заземление, а, скажем, кухонная плита, в подвале дома свое и между этими 2 “землями” будет небольшая разница потенциалов, скажем 4-6В. При расчетах сопротивление человеческого тела принимается 1000 Ом. Таким образом получается ток 5мА, что чувствительно. При 50мА наступает фибриляция сердца, а 100мА убивает. Опасно не напряжение, а ток.
Описаны случаи, когда в ванной убила разность потенциалов в 4В. Теоретически, при правильном строительстве, разности потенциалов быть не должно. Но на практике по-другому. Где-то сварное соединение заменяют на сгоны и вносят дополнительное сопротивление, а где то вставляют кусок из металлопласта…
Все это приводит к возникновению разности потенциалов в разных концах или этажах трубы, которая в конце и приводит к электрохимической коррозии.
Электрохимическая коррозия особо злостно ведет себя с подземными коммуникациями, проходящими через грунты с разной кислотностью, или если где то рядом есть трамваи и поезда.
Проблема коррозии смесителей и полотенцесушителей именно в том и состоит, что к ним подходят пластиковые трубы. Стояк, конечно же, из металлических труб. Металлические трубы все заземлены, в новых домах через систему уравнивания потенциалов, в старых – в подвале к контуру заземления.
При использовании пластиковых труб разрывается металлосвязь между трубами стояка и металлическим полотенцесушителем. Следовательно разрывается потенциал: на стояке у вас один – земля, на смесителе (полотенцесушителе) – другой. Такое явление Называется – разность потенциалов (физика за 8 класс).
Между разными потенциалами появляется электро ток, при условии появления между ними проводника. Таким проводником и является текущая вода. При движении воды по трубам происхоит микротрение различных сред: воды и металла, а при трении возникает – напряжение! Т.
е потенциал, тот что в стояке равен потенциалу земли (заземлено), а тот что в полотенцесушителе – сам по себе, а через воду между разными потенциалами и возникают “блуждающие токи”, и, как следствие – коррозия.
Вода обладает отличной токопроводимостью.
ВСЕ что вам НАДО СДЕЛАТЬ, – это обеспечить надежную металлическую связь между трубами стояка и металлическими оконечными устройствами (смесителем, полотенцесушителем).
Проще говоря – заземлите свой полотенцесушитель на металлические трубы стояка и все блуждающие неприятности вас покинут тотчас, потенциал выравняется и току неоткуда и некуда будет течь.
Пока трубопроводы холодной и горячей воды, а также отопления выполнялись из стальных труб – вопрос о заземлении каждой батареи просто не мог возникнуть: в подвале каждый трубопровод заземлялся в двух местах (как протяженный элемент). Обратите внимание: каждая ванна также заземлялась (на трубопровод) отдельным проводником, т.к.
иначе у нее нет электрической связи с водопроводной трубой. Когда начали повсеместно использовать пластиковые или металлопластиковые трубы – о заземлении как-то мало кто задумывается. Казалось бы, металлопластиковая труба – сродни стальной (по проводимости).
Но – вы где-нибудь видели соединительные елементы, которые обеспечивали бы электрический контакт с алюминием внутри стенки металлопластиковой трубки? И получается так: вода – достаточно проводима, чтобы подвести опасное напряжение в ненужное место, но недостаточно проводима, чтобы защитить человека от удара током.
Плюс при движении вода за счет трения о стенки (диэлектрик) электризуется, и статический заряд накапливается на металлических элементах (своего рода Лейденская банка). При прикосновении – бьет ощутимо. Человека с больным сердцем может и убить.
Есть еще одна опасность: среди соседей может найтись придурок, который с целью экономии решит установить жучок, чтобы счетчик в обратную сторону крутился. И не придумает ничего лучшего, чем подключиться к системе отопления.
Тогда к батарее лучше не прикасаться (даже если трубы стальные). В ПРАВИЛАХ УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК, глава 1.7 (дополнительная система уравнивания потенциалов), говорится: “…Все металлические элементы должны быть заземлены”.
Вывод:
При применении пластиковых и металлопластиковых труб ВСЕ металлические элементы системы (батареи отопления, полотенцесушители, раковины, ванны, смесители, и даже чугунные бачки унитазов) необходимо заземлять. Каждый вправе решать сам: продолжать лабораторные исследования на тему “заземление как мера борьбы с электрокоррозией” или плюнуть и купить электрический полотенцесушитель.
Источник: https://boka.com.ua/a116283-bluzhdayuschie-toki-kak.html
Блуждающие токи: причины возникновения, способы защиты от коррозии водопроводных труб
Возникновение тока в проводнике обусловлено разностью потенциалов на его концах. Блуждающие токи возникают, когда токопроводящей средой становится земля. Это явление оказывает разрушающее влияние на металлические предметы, находящиеся в земле или имеющие с ней точки соприкосновения.
В многоквартирных домах блуждающие токи появляются из-за утечек в системах электроснабжения. Это ускоряет коррозию труб в несколько раз по сравнению с проектной. Природа блуждающих токов в том, что потенциалы заземлённых конструкций различны. Причинами появления токов утечки могут быть:
- Неправильная эксплуатация электрических сетей, применение водопроводных и отопительных труб вместо нулевого проводника.
- Не соответствующее требованиям безопасности подключение бытовых приборов: стерилизаторов, стиральных машин, посудомоек, при котором система электроснабжения дома оказывается связанной с трубами водоснабжения и отопления.
- Повреждения изоляции проводников в процессе эксплуатации.
Неправильные подключения в 3-проводниковых схемах, где, кроме фазного и нулевого рабочего проводников, имеется ещё нулевой защитный, приводит к растеканию тока по металлоконструкциям. Следует избегать ошибок подключения. Не подключать в одно место нулевой рабочий и нулевой защитный проводники, не использовать защитный вместо рабочего. Кроме коррозии, это может вызвать электротравмы у людей.
Возникновение блуждающих токов может вызываться заменой металлических труб на пластиковые. Сами пластиковые трубы коррозии не подвержены, но металлическая арматура в квартирах, такая как полотенцесушители и смесители может ржаветь. Объясняется это тем, что когда все трубы были металлическими, в подвалах их заземляли специальными контурами.
Защита от электрокоррозии
Под землёй проходит большое количество трубопроводов и кабелей, которые нуждаются в антикоррозионной защите. Для защиты магистральных трубопроводов применяются следующие методы:
- Метод катодной защиты. Он основан на формировании с помощью катодных станций на подземных сооружениях потенциалов, увеличивающих сопротивление блуждающему току.
- Создание диэлектрической изоляции.
- Возможно увеличивать продольное сопротивление трубопроводов, используя врезку изоляционных муфт.
- Замена металлических труб на пластмассовые.
Блуждающие токи на заправках
На заправках появление блуждающих токов наиболее опасно. Там следует предотвратить малейшую возможность возникновения искры. Для защиты используется заземляющий контур и тщательное заземление всех металлических частей.
Следует опасаться и статического электричества, источником которого может явиться водитель. Блуждающие токи на теле могут образоваться в результате трения о синтетические покрытия внутри машины. Этого иногда бывает достаточно, чтобы воспламенился пистолет.
Нужно при выходе из машины выровнять потенциалы, взявшись одной рукой за машину, а другой за бензоколонку.
Статическое электричество накапливается не только на одежде. Опасным может быть мобильный телефон и включённый двигатель. Не рекомендуется держать топливо в пластмассовых канистрах.
Трение бензина о поверхность пластика тоже создаёт статическое электричество. Это может вызвать искру при попытке залить бензин в бензобак.
Лучше использовать для перевозки бензина железные канистры.
Блуждающие токи опасны. Они вызывают коррозию и выход из строя подземных коммуникаций. В многоквартирных домах они выводят из строя раньше срока инженерное оборудование, разрушают водопроводные трубы и системы отопления.
В некоторых случаях они даже представляют угрозу для жизни людей.
Необходимо бороться с этим явлением, не нарушать правил техники безопасности при проведении любых электротехнических работ и следить за тем, чтобы все приборы были правильно подключены и заземлены.
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/bluzhdayuschie-toki-i-zaschita-vodoprovodnyh-trub-ot-korrozii.html
Блуждающие токи и их воздействие на трубопровод
В последнее десятилетие участились случаи немотивированной ускоренной коррозии трубопроводов систем водоснабжения и отопления зданий.
При соблюдении основных требований к составу воды (включая содержание растворенного кислорода), материалу труб и температурному режиму коррозия ускоряется в 2-10 раз по сравнению с проектными расчетными данными.
Опыт работы специалистов Центра электромагнитной безопасности (ЦЭМБ) позволяет утверждать, что одной из причин ускоренной коррозии трубопроводов в современных условиях являются несанкционированно протекающие по ним токи промышленной частоты, источниками которых являются токи утечки системы электроснабжения этих же зданий.
Взаимосвязь протекающих токов и коррозии
Термин «коррозия, вызванная токами (блуждающими токами)» обычно связывают с постоянным током в подземном металлическом сооружении.
Источники таких токов находятся вне поврежденной конструкции: электрифицированный транспорт (трамваи, метрополитен, железная дорога), системы катодной защиты, шахтные системы электроснабжения постоянным током и т.д.
[1-5] При этом интенсивные коррозионные разрушения происходят в местах стекания постоянного тока с внешней поверхности металла в электролит (воду или грунт). Отечественная и мировая практика эксплуатации систем водоснабжения признает эту проблему и учитывает ее.
Однако на внутренней поверхности определенных участков трубопроводов, проложенных внутри зданий и находящихся вне зоны растекания блуждающих токов в обычном их понимании, также возникают и повторяются характерные «свищи», что требует специального рассмотрения и объяснения.
В период с 1996 по 2002 год были выполнены прямые осциллографические измерения токов, протекающих по внутренним трубопроводам систем отопления и водоснабжения зданий на более чем 200 объектах г. Москвы.
Измерения проводились с помощью специально разработанной методики «Проведение работ по определению наличия источников и основных путей попадания токов утечки от системы электроснабжения на металлоконструкции и трубопроводные системы зданий» и аппаратуры на основе многоканального аппаратурно-компьютерного комплекса регистрации токов.
В ходе работ было зафиксировано, что по трубопроводам протекают переменные токи промышленной частоты с от 0,1 до 18,2 А. Распределение токов приведено на рис. 1.
Рис. 1
Анализ полученных данных позволил установить корреляцию между величиной протекающего тока и скоростью коррозии трубопроводов. В таблице 1 приводятся типичные данные о сроках службы трубопроводов до начала проявившегося выраженного коррозионного процесса (критерий – появление первого «свища») в сопоставлении с зафиксированными токами, протекающими по трубопроводам.
Таблица 1
На основании данных, приведенных в таблице 1, а также экспертных заключений ВНИИ Коррозии и Ассоциации разработчиков и производителей средств противокоррозионной защиты для топливно-энергетического комплекса (КАРТЭК) [6,7], можно сделать вывод о прямой корреляции между скоростью коррозии внутренних трубопроводов зданий и величиной протекающих по ним переменных и постоянных токов.
Необходимо обратить особое внимание на то, что одной из особенностей токов, протекающих по трубопроводам, является изменение их величины (вплоть до полного исчезновения в определенные моменты времени) в зависимости от изменения электрических нагрузок в здании.
Типичный пример измерения тока, протекающего по трубопроводу, приведен на рис. 2. Характерные причины попадания токов утечки на трубопроводы показаны на рис. 2-5.
Причины возникновения токов утечки
Основными причинами возникновения токов утечки и попадания их на трубопроводы являются:
- непрофессиональная эксплуатация действующей системы электроснабжения, например, преднамеренное использование трубопроводных систем в качестве нулевых рабочих проводников (см. рис. 3,4);
- некорректное подключение электропотребителей (стерилизаторы, стиральные машины гидромассажные ванны, душевые кабины, водонагревательные котлы, посудомоечные машины и т.д.), связывающих трубопроводные системы с системой электроснабжения зданий (см. рис. 5);
- возникающие в процессе эксплуатации повреждения изоляции кабельных линий и/или электрооборудования, ослабление, отгорание и механические повреждения нулевых рабочих проводников.
При реконструкции старых систем электроснабжения и монтаже новых в соответствии с требованиями [6,7] внедряется 3-х и 5-ти проводная схема подключения электрооборудования, то есть фактически к фазным и нулевому рабочему проводникам добавляется нулевой защитный проводник.
Любая неочевидная ошибка в подключении электрооборудования в этих схемах (чаще встречается подключение нулевого рабочего проводника к клемме нулевого защитного и наоборот, либо подключение под один контактный зажим обоих проводников) приводит к неконтролируемому растеканию токов по металлоконструкциям и трубопроводам систем водоснабжения и отопления, которое не только увеличивает скорость точечной коррозии трубопроводов, но и представляет опасность поражения людей электрическим током. В отчетах эксплуатирующих водопроводы организаций указывается на искрение между разъединенными концами трубопровода, жалобы обслуживающего персонала на «удары» током.
Рис. 2
Рис. 3, 4
Рис. 5
Коррозию легче предотвратить, чем «лечить»
Обычно для решения проблемы неконтролируемого растекания токов электрически изолируют все внутренние водопроводные линии от подводяшей магистрали или проводят замену подверженных ускоренной электрохимической коррозии металлических труб на пластиковые.
Однако нельзя забывать, что трубопроводы фактически являются элементами системы электроснабжения, поэтому при замене металлических труб на пластиковые решается вопрос об устранении их электрохимической коррозии, но одновременно может существенно возрасти нагрузка на нулевые рабочие проводники и в значительной степени увеличиться сопротивление петли «фаза-ноль», что приводит к уменьшению величины токов короткого замыкания.
Вышеуказанные обстоятельства могут привести к отгоранию нулевых рабочих проводников, вследствие чего напряжение у потребителей наименее нагруженных фаз резко возрастает, что зачастую приводит к выходу из строя электрооборудования и пожарам.
При увеличении сопротивления петли «фаза-ноль» возможно несрабатывание устройств защиты от коротких замыканий (автоматических выключателей) вследствие возникшего после замены труб несоответствия уставок автоматических выключателей и уменьшившихся величин токов К.З.
ПУЭ допускает использование водопроводных труб в качестве защитного заземляющего проводника. Поэтому в целях обеспечения электробезопасности при замене металлических труб на пластиковые требуется особенно тщательная проверка наличия и измерения величины сопротивления цепей заземления электропотребителей.
Мы считаем, что наиболее технически грамотным и эффективным методом борьбы с вышеуказанными является не ликвидация последствий, а устранение первопричины возникновения токов утечки, т.е. полное обследование системы электроснабжения зданий с определением источников и конкретных мест возникновения таких токов.
Очевидно, что исследования связи коррозии с протекающими по трубопроводам токами промышленной частоты должны быть продолжены, как в направлении разработки физической модели механизма, так и в направлении накопления фактического статистически значимого материала.
Однако для эксплуатирующих служб, по нашему мнению, в первую очередь целесообразно выполнять работы по обследованию системы электроснабжения зданий, в целях выявления ошибок в подключении электрооборудования и их устранения, что, несомненно, приведет к существенному снижению скорости интенсивной точечной коррозии трубопроводов систем водоснабжения и отопления зданий.
Авторы:
Олег Григорьев,
Виктор Петухов,
Василий Соколов, Центр электромагнитной безопасности,
г. Москва
Литература:
- Исаев Н.И. «Теория коррозионных процессов». – М., Металлургия, 1997.
- Стрижевский И.В. и др. «Защита подземных металлических сооружений от коррозии». Справочник. – М., Стройиздат, 1990.
- Michael Horton. «Corrosion effects of electrical grounding on water ipe». Corrosion 91 The NACE Annual Conference and Corrosion Show . – March 11-15 1991 Cincinnati, Ohio.
- W.F. Bennett, Albert C. Holler, William D. Hurst C.M. //An Unusual Form of Corrosion. Journal AWWA. – 1977, № 1. – pp.26-30.
- Петухов В.С. и др. «Коррозионные повреждения трубопроводов зданий, вызванные протеканием по ним токов». – М.: Практика противокоррозионной защиты, №4 (10), 1998.
- Письмо Всероссийского НИИ коррозии № 87 от 06.11.2001.
Источник: http://www.Sunerzha.com/technics/articles/?news=452371